Population Pharmacokinetics of Dimethylacetamide in Children During Once-daily and Standard IV Busulfan Administration

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Trame MN¹ · Bartelink IH² · Boos J³ · Boelens JJ² · Hempel G^{1,3}

¹Department of Pharmaceutical and Medical Chemistry – Clinical Pharmacy -, University of Muenster, Germany ²Department of Haematology, Immunology and Clinical Pharmacy, University Medical Center Utrecht, The Netherlands ³Department of Paediatric Haematology and Oncology, University Children's Hospital Muenster, Germany Contact E-mail: tramemirjam@uni-muenster.de

Background and Objectives

N,N-Dimethylacetamide (DMA) is applied to children during high-dose chemotherapy as a solubilizer with the intravenous (IV) formulation of busulfan (Busilvex®). DMA has shown liver toxicity in rats, but little is known on the pharmacokinetics of DMA in humans.

In a previous investigation (J Clin Oncol 25:1772-1778, 2007), we analysed the pharmacokinetic of DMA in 18 children in a four times daily regimen. The aim of this analysis was to evaluate possible differences in pharmacokinetics of DMA after administration of a once daily dose in comparison with a similar amount, divided over 3-4 administration per day in children.

Patients and Methods

- · 43 children received busulfan prior to bone marrow transplantation
- median age 2.7 (range 0.1 18.9 years)
- median BSA 0.63 m² (range 0.24 2 m²)
- median body weight 15.1 kg (range 4 74.2 kg)
- · 24 children received IV busulfan once daily as a 3 h infusion
 - first dose in patients > 1 year: 120 mg/m²
 - first dose in patients < 1 year: 80 mg/m²
 - followed by doses evaluated through TDM
- 18 children received IV busulfan four times daily as a 2 h infusion
 - first dose was given as a double dose (1.4 2.0 mg/kg) over 4 h
 - followed 12 h later by 15 single doses (0.7 1.0 mg/kg) every 6 h
- all plasma samples were analysed by LC-MS with a LOQ of 0.25 mg/L
- reduced sampling method
- plasma concentration-time data were analysed using NONMEM VI

Plasma Sample Collection

- plasma samples drawn during routine drug monitoring in children receiving busulfan or during a clinical trial (Anti-Cancer Drugs 16:337-344)
- plasma samples were taken 4 5 times during the whole dose regimen prior to next dose
- plasma samples are stored at 20°C until analysis

Pharmacokinetic Analysis

- one-compartment model with first order conditional estimation (FOCE)
- residual variability was modelled using a proportional error model with different values for the German and Dutch data set
- exponential model for IIV and IOV
- covariates
 - body weight as a covariate for clearance (CI) and volume of distribution $\left(\mathsf{V}\right)$
 - Cl increasing by 0.0024 ml h⁻² kg⁻¹ during the standard dosing
 - Cl increasing by 0.000258 ml $h^{\text{-}2}\ \text{kg}^{\text{-}1}$ during the once daily dosing

Results

Using a one-compartment model with clearance (CI) increasing over time the DMA kinetics were best described. Several covariates were tested on their effects on the pharmacokinetic parameters. By using body weight as a covariate for CI and volume of distribution (V) the best results were obtained (Table 1). Peak plasma concentrations of DMA up to 3.09 mmol/L (median 0.75 mmol/L) for the standard dosing and up to 8.77 mmol/L (median 3 mmol/L) for the once-daily dosing were observed, respectively.

	Pop. Mean	IIV %	IOV %	
Cl _{initial} (ml h ⁻¹ kg ⁻¹)	75.5 (15.5%)	45.4% (45.6%)	28.6% (18.2%)	Table 1: Results of the population pharmacokinetic analysis; standard errors in brackets
V (ml kg ⁻¹)	518 (6.9%)	19.3% (86.8%)		
CI time factor MS (mI h ⁻² kg ⁻¹)	0.0024 (30.3%)			
CI time factor Utrecht (mI h ⁻² kg ⁻¹)	0.000258 (67.4%)			
prop. error MS	33.4% (20.2%)			
prop. error Utrecht	16.2% (17.2%)			

Figure 1: DMA plasma concentrations during standard busulfan dosing regimen for a respresentative patient

The DMA kinetics were best described using a one-compartment model with clearance increasing over time by 58 ml h⁻¹ kg⁻¹ and 6.1 ml h⁻¹ kg⁻¹ per day for the standard dosing and once-daily dosing regimen, respectively.

Figure 3: Goodness-of-fit plot for the model predicted concentrations vs observed DMA concentrations for the pediatric patients in the final model

Figure 6: Weighted residuals over time after dose

Figure 5: Weighted residuals in the population model

Acknowledgements

We acknowledge Dr. Gaiser of the Department of Immunology and the medical and nursing staff of the Department of Haematology and Immunology for collecting plasma samples.

Conclusion

We could confirm the results from our previous study without observing significant differences in Cl_{initial} and V between the two cohorts. The steeper increase in clearance in the standard dose group might be explained by a higher constant exposure of DMA

